If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+45x-60=0
a = 15; b = 45; c = -60;
Δ = b2-4ac
Δ = 452-4·15·(-60)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-75}{2*15}=\frac{-120}{30} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+75}{2*15}=\frac{30}{30} =1 $
| 7(9b+3)=-18-6b | | 3×x/3+6=-2×3 | | 25-6n=2n-(12n-1) | | 2k^2-7k+5=0 | | -4=2d-18+5d | | 40+19.95x-59.85=59.85+29.95x-179.7 | | x-4/5=1/4 | | 15x+60-x-15=14x+55 | | 20e=80 | | 0=7.5^0,3x | | -6-6b=-16+3b-4b | | 3b-4/4=b-1/8 | | 78-2x=98-3x | | −9(t−2)=4(t−15S) | | 28-5=2+3(x+3 | | 3x+8=4(x+2)-x | | x2+16x+56=0 | | (5/12)x=5 | | 2(5c-7)=10(c-3) | | 5(x+16)+36x=2(x+18)-200 | | -115=-5(-1-4n) | | (x-4)^2-28=0 | | -140=10p | | 3(5x+4)5x=-8 | | 15=-2x-1 | | v+3/5=7/10 | | 0,24x=0,72 | | 4x+1=2(x+1) | | 3(5+4n)=75 | | 9(x-3)+8=3x-8 | | w+1/7=6w/7-7 | | 14(x+10)=2(x-36) |